VOLTA: from CO₂ to plastics with negative C-footprint

Julia Krasovic, Annelie Jongerius, Mariana Paredinha Araujo, Gert-Jan Gruter

Motivation

Avantium is working on various alternative feedstock options for producing future plastics. Next to glucose (for FDCA/PEF), also CO₂ can be used as carbon source for making plastics. **Not** all products from CO₂ require large energy investment. We focus on monomers that will be winning when starting from CO₂. Winning = lowest cost and superior performance. When we use CO₂ form the air or bio- CO₂ (from fermentation, biomass electricity or waste incineration) and when using renewable energy, products with a negative carbon footprint

Aims

Produce High performance polymers/plastics from CO₂ as carbon source. PLGA is strong, has fantastic gas-barrier, is closed-loop recyclable, is home compostable and marine degradable.

Approach

Three business cases:

can be obtained.

Defined	 CO₂ is well defined vs biomass feed stock
Agnostic	 Multiple sources are possible- Biogenic and DAC are preferred for the long term
Competitive	 No competition with food/land use/deforestation
Clean	 Electrons as a reagent; very high selectivity
Flexible	 Technology allows "peak-shaving"
Valuable	 One of the few technologies to turn CO₂ into valuable products with the potential to enable carbon negative materials
De-risked	 Scaling out electrochemical cell stacks dramatically reduces the risk of scale-up
Potential	 Ability to address large markets (proteins, ethanol, chemicals, polymers and fuels)

Oxygen barrier PLGA 10/90

1. 2 CO₂ \rightarrow HOOC-COOH (oxalic acid); ~4 MWh electricity/ton

- 2. HOOC-COOH (oxalic acid) + $2H_2 \rightarrow HOOC-CH_2OH$ (glycolic acid)
- 3. Glycolic acid \rightarrow polyglycolic acid (PLGA)

PLGA biodegradation:

Oxygen (a) and water (b) permeability for 2 PLGA's Measured at 30°C and 70% RH. (g.mm/m².day.bar)

Value Proposition

- CO_2 -based \rightarrow potentially carbon negative footprint •
- Good mechanical properties (semi-crystalline) \bullet
- **Excellent** barrier \bullet
- Closed-loop recyclable \bullet
- Home compostable; marine degradable